Nanosecond dynamics in intrinsic topological insulator <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Bi</mml:mi><mml:mrow><mml:mn>2</mml:mn><mml:mo>−</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:msub><mml:msub><mml:mi>Sb</mml:mi><mml:mi>x</mml:mi></mml:msub><mml:msub><mml:mi>Se</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:mrow></mml:math> revealed by time-resolved optical reflectivity

نویسندگان
چکیده

${\mathrm{Bi}}_{2}{\mathrm{Se}}_{3}$ is an ideal three-dimensional topological insulator in which the chemical potential can be brought into bulk band gap with antimony doping. Here, we utilize ultrafast time-resolved transient reflectivity to characterize photoexcited carrier decay ${\mathrm{Bi}}_{2\ensuremath{-}x}{\mathrm{Sb}}_{x}{\mathrm{Se}}_{3}$ nanoplatelets. We report a substantial slowing of relaxation time bulk-insulating as compared $n$-type bulk-metallic at low temperatures, approaches $3.3\phantom{\rule{0.16em}{0ex}}\mathrm{ns}$ zero pump fluence limit. This long-lived correlated across different fluences and concentrations, revealing unique dynamics not present ${\mathrm{Bi}}_{2}{\mathrm{Se}}_{3}$, namely slow bimolecular recombination carriers.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Charge transfer dynamics in DNA revealed by time-resolved spectroscopy

In the past few decades, charge transfer in DNA has attracted considerable attention from researchers in a wide variety of fields, including bioscience, physical chemistry, and nanotechnology. Charge transfer in DNA has been investigated using various techniques. Among them, time-resolved spectroscopic methods have yielded valuable information on charge transfer dynamics in DNA, providing an im...

متن کامل

Nanosecond time-resolved reflectivity determination of the melting of metals upon pulsed laser annealing

Thin metal fiIrns (Cu, Au, Ni) on quartz glass were illuminated with nanosecond pulse.; of a frequency doubled Nd:YAG laser (A = 532 nm). The transient reflectivity behavlour was probed at the wavelength 633 nm, where these metals exhibit Drude-Iike optical behaviour: the reflectivity decreases with temperature in the solid and in the Iiquid state as well as at the solid-llquid phase transition...

متن کامل

Intrinsic Topological Insulator Bi1.5Sb0.5Te3-xSex Thin Crystals

The quaternary topological insulator (Bi,Sb)2(Te,Se)3 has demonstrated topological surface states with an insulating bulk. Scientists have identified an optimized composition of Bi(1.5)Sb(0.5)Te(1.7)Se(1.3) with the highest resistivity reported. But the physics that drive to this composition remains unclear. Here we report the crystal structure and the magneto-transport properties of Bi(1.5)Sb(...

متن کامل

Femtosecond dynamics of electronic states in the Mott insulator 1T-TaS2 by time resolved photoelectron spectroscopy

Photoexcitation of the Mott insulator 1T-TaS2 by an intense laser pulse leads to an ultrafast transition toward a gapless phase. Besides the collapse of the electronic gap, the sudden excitation of the charge density wave (CDW) mode results in periodic oscillations of the electronic states. We employ time resolved photoelectron spectroscopy to monitor the rich dynamics of electrons and phonons ...

متن کامل

Persistent optical gating of a topological insulator

The spin-polarized surface states of topological insulators (TIs) are attractive for applications in spintronics and quantum computing. A central challenge with these materials is to reliably tune the chemical potential of their electrons with respect to the Dirac point and the bulk bands. We demonstrate persistent, bidirectional optical control of the chemical potential of (Bi,Sb)2Te3 thin fil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review B

سال: 2021

ISSN: ['1098-0121', '1550-235X', '1538-4489']

DOI: https://doi.org/10.1103/physrevb.103.l020301